6.1 模型导出
🎉代码仓库地址:https://github.com/Oneflow-Inc/one-yolov5 欢迎star one-yolov5项目 获取最新的动态。 如果您有问题,欢迎在仓库给我们提出宝贵的意见。🌟🌟🌟 如果对您有帮助,欢迎来给我Star呀😊~
模型导出
📚 这个教程用来解释如何导出一个训练好的 OneFlow YOLOv5 模型 🚀 到 ONNX .
开始之前
克隆工程并在 Python>3.7.0 的环境中安装 requiresments.txt , OneFlow 请选择 nightly 版本或者 >0.9 版本 。模型和数据可以从源码中自动下载。
git clone https://github.com/Oneflow-Inc/one-yolov5.git
cd one-yolov5
pip install -r requirements.txt # install
格式
YOLOv5支持多种模型格式的导出,并基于特定模型对应的框架获得推理加速。
Format | export.py --include |
Model |
---|---|---|
OneFlow | - | yolov5s_oneflow_model/ |
ONNX | onnx |
yolov5s.onnx |
OpenVINO | openvino |
yolov5s_openvino_model/ |
TensorRT | engine |
yolov5s.engine |
TensorFlow SavedModel | saved_model |
yolov5s_saved_model/ |
TensorFlow GraphDef | pb |
yolov5s.pb |
TensorFlow Lite | tflite |
yolov5s.tflite |
TensorFlow Edge TPU | edgetpu |
yolov5s_edgetpu.tflite |
TensorFlow.js | tfjs |
yolov5s_web_model/ |
导出训练好的 YOLOv5 模型
下面的命令把预训练的 YOLOV5s 模型导出为 ONNX 格式。yolov5s
是小模型,是可用的模型里面第二小的。其它选项是 yolov5n
,yolov5m
,yolov5l
,yolov5x
,以及他们的 P6 对应项比如 yolov5s6
,或者你自定义的模型,即 runs/exp/weights/best
。有关可用模型的更多信息,可以参考我们的README
💡 提示: 添加 --half 以 FP16 半精度导出模型以实现更小的文件大小。
输出:
export: data=data/coco128.yaml, weights=['../yolov5s/'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['onnx']
YOLOv5 🚀 270ac92 Python-3.8.11 oneflow-0.8.1+cu117.git.0c70a3f6be CPU
Fusing layers...
YOLOv5s summary: 157 layers, 7225885 parameters, 229245 gradients
OneFlow: starting from ../yolov5s with output shape (1, 25200, 85) (112.9 MB)
ONNX: starting export with onnx 1.12.0...
Converting model to onnx....
Using opset <onnx, 12>
Optimizing ONNX model
After optimization: Const +17 (73->90), Identity -1 (1->0), Unsqueeze -60 (60->0), output -1 (1->0), variable -60 (127->67)
Succeed converting model, save model to ../yolov5s.onnx
<class 'tuple'>
Comparing result between oneflow and onnx....
Compare succeed!
ONNX: export success, saved as ../yolov5s.onnx (28.0 MB)
Export complete (24.02s)
Results saved to /home/zhangxiaoyu
Detect: python detect.py --weights ../yolov5s.onnx
Validate: python val.py --weights ../yolov5s.onnx
OneFlow Hub: model = flow.hub.load('OneFlow-Inc/one-yolov5', 'custom', '../yolov5s.onnx')
Visualize: https://netron.app
导出的 onnx 模型使用 Netron Viewer 进行可视化的结果如下:
导出模型的示例用法
detect.py
可以对导出的模型进行推理:
python path/to/detect.py --weights yolov5s/ # OneFlow
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
val.py
可以对导出的模型进行验证:
python path/to/val.py --weights yolov5s/ # OneFlow
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
ONNX Runtime 推理
基于 onnx 模型使用 onnxruntime 进行推理:
输出:
detect: weights=['../yolov5s/yolov5s.onnx'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False
YOLOv5 🚀 270ac92 Python-3.8.11 oneflow-0.8.1+cu117.git.0c70a3f6be
Loading ../yolov5s/yolov5s.onnx for ONNX Runtime inference...
detect.py:159: DeprecationWarning: In future, it will be an error for 'np.bool_' scalars to be interpreted as an index
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
image 1/2 /home/zhangxiaoyu/one-yolov5/data/images/bus.jpg: 640x640 4 persons, 1 bus, Done. (0.009s)
image 2/2 /home/zhangxiaoyu/one-yolov5/data/images/zidane.jpg: 640x640 2 persons, 2 ties, Done. (0.011s)
0.5ms pre-process, 10.4ms inference, 4.8ms NMS per image at shape (1, 3, 640, 640)
Results saved to runs/detect/exp14
参考文章
https://github.com/ultralytics/yolov5/issues/251