oneflow.nn.Module¶
Module class for building neural networks¶
-
class
oneflow.nn.
Module
¶ Base class for all neural network modules.
This class is consistent with PyTorch. The documentation is referenced from: https://pytorch.org/docs/stable/generated/torch.nn.Module.html.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import oneflow.nn as nn import oneflow.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables
training (bool) – Boolean represents whether this module is in training or evaluation mode.
-
add_module
(name: str, module: Optional[oneflow.nn.module.Module]) → None¶ 将子模块添加到当前模块。
可以使用给定的名称作为属性来访问模块。
- 参数:
name (string) - 子模块的名称,可以使用给定的名称作为属性来访问模块。
module (Module) - 要添加到模块的子模块。
- 返回值:
Module: self
-
apply
(fn)¶ Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. Typical use includes initializing the parameters of a model.- Parameters
fn (
Module
-> None) – function to be applied to each submodule- Returns
self
- Return type
Example:
>>> import oneflow as flow >>> import oneflow.nn as nn >>> @flow.no_grad() ... def init_weights(m): ... print(m) ... if type(m) == nn.Linear: ... m.weight.fill_(1.0) ... print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) tensor([[1., 1.], [1., 1.]], dtype=oneflow.float32, requires_grad=True) Linear(in_features=2, out_features=2, bias=True) tensor([[1., 1.], [1., 1.]], dtype=oneflow.float32, requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
-
buffers
(recurse=True) → Iterator[Tensor]¶ Returns an iterator over module buffers.
- Parameters
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
oneflow.Tensor – module buffer
Example:
>>> for buf in model.buffers(): ... print(type(buf), buf.size()) <class 'oneflow.Tensor'> oneflow.Size([10])
-
children
() → Iterator[Module]¶ Returns an iterator over immediate children modules.
- Yields
Module – a child module
Example:
>>> import oneflow.nn as nn >>> l1 = nn.Linear(2, 2) >>> l2 = nn.Linear(2, 2) >>> net = nn.Sequential(l1, l2) >>> for idx, m in enumerate(net.children()): ... print(idx, '->', m) 0 -> Linear(in_features=2, out_features=2, bias=True) 1 -> Linear(in_features=2, out_features=2, bias=True)
-
cpu
() → T¶ 将所有模型参数和缓存移动到 CPU。
Note
此方法会以 in-place 方式修改模块。
-
cuda
(device: Optional[Union[int, oneflow._oneflow_internal.device]] = None) → T¶ 将所有模型参数和缓存移动到 GPU。
这也会使关联的参数和缓存成为不同的对象。因此,如果模块运行在 GPU 上且需要被优化,该函数应在构建优化器之前被调用。
Note
此方法会以 in-place 方式修改模块。
- 参数:
device (int, optional) - 如果指定了 device,所有参数将被复制到此
- 返回值:
Module: self
-
double
() → T¶ 将所有浮点参数和缓存转换为
double
数据类型。Note
此方法会以 in-place 方式修改模块。
- 返回值:
Module: self
-
eval
()¶ Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm1d
, etc.This is equivalent with
self.train(False)
.- Returns
self
- Return type
-
float
() → T¶ 将所有浮点参数和缓存转换为
float
数据类型。Note
此方法会以 in-place 方式修改模块。
- 返回值:
Module: self
-
half
()¶ Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns
self
- Return type
-
load_state_dict
(state_dict, strict=True)¶ Copies parameters and buffers from
state_dict
into this module and its descendants. Ifstrict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.- Parameters
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- Returns
missing_keys is a list of str containing the missing keys
unexpected_keys is a list of str containing the unexpected keys
- Return type
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
-
modules
() → Iterator[Module]¶ Returns an iterator over all modules in the network.
- Yields
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> import oneflow.nn as nn >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
-
named_buffers
(prefix='', recurse=True) → Iterator[Tuple[str, Tensor]]¶ Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters
prefix (str) – prefix to prepend to all buffer names.
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
(string, oneflow.Tensor) – Tuple containing the name and buffer
Example:
>>> for name, buf in self.named_buffers(): ... if name in ['running_var']: ... print(buf.size())
-
named_children
() → Iterator[Tuple[str, Module]]¶ Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields
(string, Module) – Tuple containing a name and child module
Example:
>>> for name, module in model.named_children(): ... if name in ['conv4', 'conv5']: ... print(module)
-
named_modules
(memo=None, prefix='')¶ Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
- Yields
(string, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> import oneflow.nn as nn >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
-
named_parameters
(prefix='', recurse=True) → Iterator[Tuple[str, Tensor]]¶ Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
(string, Parameter) – Tuple containing the name and parameter
Example:
>>> for name, param in self.named_parameters(): ... if name in ['bias']: ... print(param.size())
-
parameters
(recurse=True) → Iterator[Parameter]¶ Returns an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
Parameter – module parameter
Example:
>>> for param in model.parameters(): ... print(type(param), param.size()) <class 'oneflow.Tensor'> oneflow.Size([10])
-
register_buffer
(name, tensor, persistent=True)¶ Adds a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters
name (string) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> self.register_buffer('running_mean', oneflow.zeros(num_features))
-
register_forward_hook
(hook)¶ Registers a forward hook on the module.
The hook will be called every time after
forward()
has computed an output. It should have the following signature:hook(module, input, output) -> None or modified output
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called.
-
register_forward_pre_hook
(hook)¶ Registers a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked. It should have the following signature:hook(module, input) -> None or modified input
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).
-
register_parameter
(name, param)¶ Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters
name (string) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
-
state_dict
(destination=None, prefix='', keep_vars=False) → Dict[str, Tensor]¶ Returns a dictionary containing a whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.- Parameters
destination (dict, optional) – Deprecated. This dict is returned with the module state saved in it. It should also have an attribute
_metadata: dict
to save metadata of the module state. If it’s not provided, anOrderedDict
is created and returned. Default:None
prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in dict. Default:
''
keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching is not performed. Default:False
- Returns
a dictionary containing a whole state of the module
- Return type
dict
Example:
>>> import oneflow.nn as nn >>> l1 = nn.Linear(2, 2) >>> l2 = nn.Linear(2, 2) >>> net = nn.Sequential(l1, l2) >>> net.state_dict().keys() odict_keys(['0.weight', '0.bias', '1.weight', '1.bias'])
-
to
(device=None)¶ Moves the parameters and buffers.
Its signature is similar to
oneflow.Tensor.to()
. The parameters and buffers will be moveddevice
, if that is given.See below for examples.
Note
This method modifies the module in-place.
- Parameters
device (
oneflow.device
) – the desired device of the parameters and buffers in this module- Returns
self
- Return type
Examples:
>>> import oneflow as flow >>> import oneflow.nn as nn >>> linear = nn.Linear(2, 2) >>> linear.weight.device device(type='cpu', index=0) >>> gpu1 = flow.device("cuda:1") >>> linear.to(gpu1) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight.device device(type='cuda', index=1) >>> cpu = flow.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight.device device(type='cpu', index=0)
-
to_consistent
(*args, **kwargs)¶ 此接口已停止维护,请使用
oneflow.nn.Module.to_global()
-
to_global
(placement=None, sbp=None)¶ 将所有参数和缓存设置为全局的。
它对此模块中每一个参数和缓存执行相同的
oneflow.Tensor.to_global()
Note
此方法会以 in-place 方式修改模块。
如果该模块的参数和缓存是本地的,则 placement 和 sbp 都是必需的,否则至少需要其中的一个。
- 参数:
placement (flow.placement, optional) - 该模块中参数和缓存的所需位置。默认值为 None
sbp (flow.sbp.sbp or tuple of flow.sbp.sbp, optional) - 此模块中参数和缓存的所需 sbp。默认值为 None
示例:
> import oneflow as flow > m = flow.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3) > m.to_global(placement=flow.placement("cpu", ranks=[0]), sbp=[flow.sbp.split(0)]) > m.weight.is_global True > m.bias.is_global True
-
train
(mode=True)¶ Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm1d
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
self
- Return type
-
zero_grad
(set_to_none: bool = False) → None¶ 将所有模型参数的梯度设置为零。更多细节请参考
oneflow.optim.Optimizer
中的类似功能。- 参数:
set_to_none (bool) - 设置梯度为 None 而非 0。更多细节请参考
oneflow.optim.Optimizer.zero_grad()